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Abstract:

e In this paper we present Bayes estimators of the parameter of the Rayleigh distribu-
tion, that stems from an extension of Jeffreys prior (Al-Kutubi (2005)) with a new
loss function (Al-Bayyati (2002)). The performance of the proposed estimators has
been compared in terms of bias and the mean squared error of the estimates based on
Monte Carlo simulation study. We also derive the credible and the highest posterior
density intervals for the Rayleigh parameter. We present an illustrative example to
test how the Rayleigh distribution fits to a real data set.

Key-Words:

o cxtension of Jeffreys prior; Jeffreys prior; Rayleigh distribution.

AMS Subject Classification:

o 62C10, 62F10, 62F15, 65C10.



214 Sanku Dey and Tanujit Dey



Rayleigh Distribution Revisited 215

1. INTRODUCTION

The Rayleigh distribution has a wide range of applications including life
testing experiments and clinical studies. One major application of this model is
used in analyzing wind speed data. This distribution is a special case of the two
parameter Weibull distribution with the shape parameter equal to 2. This statis-
tical model was first introduced by Rayleigh (Rayleigh (1880)). Siddiqui (1962)
discussed the origin and properties of the Rayleigh distribution. Several authors
have contributed to this model, namely, Sinha and Howlader (1983), Ariyawansa
and Templeton (1984), Howlader (1985), Howlader and Hossian (1995), Lalitha
and Mishra (1996) and Abd Elfattah et al. (2006).

The probability distribution function (PDF) of one-parameter Rayleigh dis-
tribution is:

x x?
(1.1) f(zlo) = = exp|l—=— |, x>0, 0>0.
o? 202

The objective of this article is to estimate the parameter and to obtain
the credible and highest posterior density (HPD) intervals of the parameter of
the Rayleigh distribution. We are proposing four different types of estimator.
Under squared error loss function, there are two estimators formed by using
Jeffreys prior and an extension of Jeffreys prior. The two remaining estimators
are derived using the same Jeffreys prior and extension of Jeffreys prior under a
new loss function introduced by Al-Bayyati (2002).

The article is organized as follows: Section 2 proposes two Bayes estimators
of o and the estimation is based on the squared error loss function using Jeffreys
prior and an extension of Jeffreys prior information. Section 3 introduces the
remaining two Bayes estimators of ¢ based on a loss function introduced by
Al-Bayyati (2002) that uses Jeffreys and extension of Jeffreys prior. Section 4
presents the credible interval and the HPD interval for the Rayleigh parameter
using extended Jeffreys prior. Section 5 is devoted to illustrative examples using
both simulated and real life data sets, and Section 6 is the discussion.

2. PARAMETER ESTIMATION UNDER SQUARED ERROR
LOSS FUNCTION

In this section, two different prior distributions are used for estimating the
parameter of the Rayleigh distribution, namely; Jeffreys prior (Jeffreys (1961))
and extension of Jeffreys prior information.
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2.1. Using Jeffreys prior

Considering there are n realizations, x = (x1, 2, ...,x,) from (1.1). We
consider Jeffreys prior as g1(0) < \/I(0), where

I(o) = —nE(W) _n

Then the joint p.d.f. is given by

o2’

n

f(§70-) = Hf(xlaa) 91(0) )

i=1
and the corresponding marginal PDF of z is obtained as
= - [y
p(z) = / f(z,0)do o [2" IT(n) Vn| ==
0 (>0 «?)

The posterior PDF of ¢ has the following form

52 "
2(7) 52
mi(olz) = T(n) o2+ eXp<_202>7

2 : : N A 2
<. By using a squared error loss function (L(6,0) = c¢(6 —0)7),

(2.1)

where s2=3""  x
for some constant ¢, the risk function is

R(6) = /OOOL(&,U) m(o|z) do

r (2n271) 82 ¢ 2

~9 o S
= — 9N 2 /)2 °
SR Y () 2 "t o 2
The Bayes estimator 61 is the solution of the equation 61;725) = 0, which results
in
2n—1 2\1/2
(2.2) 61 = L) (s -
I'(n) 2

2.2. Using extension of Jeffreys prior

Al-Kutubi (2005) proposed an extension of Jeffreys prior in the following
form go(0) o< (I(0))®, ¢1 € RT, where I(o) is the same as in Jeffreys prior.
Moving along similar path, posterior PDF of ¢ has the following form:

9 (82 >n+c1 —0.5
2

(2.3) o (52
L(n + ¢ — 0.5) (02)" T4 P ( 202) .

ma(olz) =
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By using squared error loss function, we obtain the risk function as
o0
R(5) = / L(3,0) ma(o|z) do
0

F'n+c—1) s? ['(n+c—1.5) 52

A9
— —9 = 5
O xa—05 V2 T Tnra—05) 2

The Bayes estimator 2 is the solution of the equation 8127((;&) = 0, which

results in

. 27\1/2
(2.4) Oy = Flnte—1 (s .
F'(n4+c—0.5) \ 2

Remark 2.1. Replacing ¢; =1/2 in (2.4), the same Bayes estimator is
obtained as in (2.2) corresponding to Jeffreys prior. By replacing ¢; = 3/2in (2.4),
Bayes estimator (2.4) becomes the estimator under Hartigan’s prior (Hartigan
(1964)).

3. PARAMETER ESTIMATION UNDER A NEW LOSS FUNC-
TION

This section uses a new loss function introduced by Al-Bayyati (2002).
Employing this loss function, we obtain Bayes estimators using Jeffreys and ex-
tension of Jeffreys prior information.

Al-Bayyati (2002) introduced a new loss function of the form
(3.1) La(6,0) = 02(6 —0)?, 2 €R.

Here this loss function is used to obtain the estimator of the parameter of the
Rayleigh distribution.

3.1. Using Jeffreys prior

By using the loss function in the form given in (3.1), we obtain the following
risk function:

R(5) = /0 L6, 0) m(olz) do

Q>
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The Bayes estimator 3 is the solution of the equation 51;7((5) = 0, which

results in

(32) 5y = T2 <)/

) 2

Remark 3.1. Replacing c; =—2 in (3.2), we get Bayes estimator under
quadratic loss function (QLF) with Jeffreys prior, and if co = 0 in (3.2), we get
the Bayes estimator under squared error loss function with Jeffreys prior that
reduces to (2.2).

3.2. Using extension of Jeffreys prior

Taking the posterior distribution (2.3) and the loss function in the form
given in (3.1), the corresponding risk function becomes

R() = / La(6,0) ma(olz) do
0
2n+2c1—co—1 2 2n+2c1—co—2 catl
o — )(SQ)Q_QAFW P ><>

P(2n+22c1—1) 9 o F(2n+22c1—1) 9

=0

T (2n+2012—cg—3) 82 C22+2
+ 2n+2c1—1 <>
T (%) 2
The Bayes estimator &4 is the solution of the equation 3%2’”) = 0, which
results in
2n+2¢1 —cp—2 o\1/2
(3.3) PO G el N £
' 4 = 1‘\(271%*261270271) 2 :

Remark 3.2. Replacing ¢; =1/2 and c2 =0 in (3.3), we get the Bayes
estimator under squared error loss function with Jeffreys prior which is same
as (2.2) and if ¢; =1/2 and ¢ = —2 in (3.3), we get the Bayes estimator under
QLF with Jeffreys prior.

4. THE CREDIBLE INTERVAL AND THE HPD INTERVAL
USING EXTENDED JEFFREYS PRIOR

Earlier we derived the Bayesian point estimator of the unknown param-
eter, but it is important to account for posterior uncertainty. The purpose of
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this section is to derive the credible interval and HPD interval for the Rayleigh
parameter under extended Jeffreys prior. First, we will construct the credible
interval and then we will introduce the HPD interval.

From the expression (2.3), we see that 20%2
tion with 2(n + ¢y — 0.5) degrees of freedom [y
100(1 — )% credible interval for o, we have

follows a Chi-Squared distribu-

2

(2(n+01_0.5))]. So, to construct a

252
_ 2 25" 2
l—a =P X(lf%,Z(nJrclfO‘S)) < o2 < X(%,2(n+C170‘5))
2 52 2 52
= P|— i <o’ < — i
X/ a X({_a
(%,2(n+c1-0.5)) (1-%,2(n+c1-0.5))

Therefore, we get the 100(1 — )% credible interval for o as

22 22
X X
(2,2(n+c1-0.5)) (1-%,2(n+c1-0.5))

(4.1) Cr(o), Cy(o)| =

The HPD interval is one of the most effective tool that helps to measure
posterior uncertainty. As discussed in Box and Tiao (1973), a HPD interval is
such that the posterior density for every point inside the interval is greater than
that for every point outside it, so that the intervals include the more probable
values of the parameter. For a given probability, say 1 — «; the HPD interval is
of the shortest interval to offer a pertinent summary of the posterior knowledge
of the parameter.

Since the PDF (2.3) is unimodal, the HPD interval (H;, Hz) with proba-
bility 1 — «, for ¢ must satisfy the equations (4.2) and (4.3) simultaneously (see
Box and Tiao (1973)).

The 100(1 — «)% HPD interval [Hy, Ho] for o is derived from the following
equations:

Ho
(4.2) / mo(olz)do = 1 —«

Hy
and
(4.3) ma(Hilz) = mo(Helz) .
After simplification, the equations (4.2) and (4.3) take the following form:
2
(4.4) /QH% _ relSem2d, = 1 —a
% F(TL +c1— 0.5)

2H3
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and

HQ 2n+2c1 82 82
45 72 S S
(4:5) <H1> “Plom " om?

The HPD interval [H;, Hy| is the simultaneous solution of (4.4) and (4.5).

5. ILLUSTRATIVE EXAMPLES

This section presents the performance of four proposed estimators based
on a simulation study and real life data application.

5.1. Simulation study

In this section, we carry out a Monte Carlo simulation to study the per-
formance of the proposed Bayes estimators. The performance is evaluated based
on the bias and mean squared error (MSE) criteria for different sample sizes
(n = 10,20, 30) and for different prior parameters. In computing the estimators,
we have generated samples from (1.1) with 0 =0.5 and 1, and repeated the pro-
cess for 10,000 times. The average bias and MSE’s are presented in Tables 1
and 2, respectively. In our simulation study, we have used ¢; = 0.5,1.0,1.5,2.0
and co = +1,+£2.

MSE of ¢ is defined by MSE(6) = E(6 —0)? = Var(é6) + [Bias(6)]%. Note
that 10,000 repetitions will provide accuracy in the order +(10000)~® = +0.01
(Karian and Dudewicz (1999)), so results are reported to four decimal places.

Graphical depiction of data is often times a better representation of results.
The goal is to graphically present similar results to offer a thorough assessment of
the four estimators corresponding to their biases and MSE’s. Results in Figure 1
is obtained from a simulation study. Herein we sampled data from (1.1) with
o =1 with five different sample sizes (n =10, 20, 30, 40, 50). Four estimators are
calculated based on these samples with the values of ¢; = 0.5,1.0,1.5,2.0 and
co = 1,42,

Figure 1 is a conditional plot for biases and MSE’s of four estimators,
conditioned by sample sizes obtained from the simulated study. In Figure 1, we
see that for 41, bias and MSE are very consistent, irrespective of sample size and
both are approaching zero as sample size increases; whereas for the remaining
estimators, they are out of sync for different choices of ¢; and co. When sample
size increases from 10 to 50, the bias and MSE both decreases quite significantly.
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Bias of the Estimators

Figure 1: Conditional plot of bias and MSE of four estimators, conditioned on
sample size from a simulated study with o = 1. In the plot “Estimatorl”
stands for &1, “Estimator2” for 65, “Estimator3” for 63 and “Estimator4”
for 64, respectively. Results are based on 10,000 simulations.

5.2. A real life data example

Here we consider an example of a real life data set for comparing the per-
formances of four estimators with the maximum likelihood estimator (MLE)
of Rayleigh distribution. Based on the model (1.1), the MLE of ¢ is given

by 6yLE = \/% >r 2. We make use of a wind speed data set (Albuhairi
(2006)) of Taiz, located southwest of Yemen. Average monthly wind speed for
the year 2002 has been used for this analysis. Before performing estimation of
parameter, we have checked goodness of fit of this data by using three different
measures: Kolmogorov-Smirnov (KS) test, Anderson-Darling (AD) test and x?
goodness of fit test. KS test (test statistic value = 0.35711 with p-value 0.07098),
AD test (test statistic = 1.9879) and x? test (test statistic value = 0.8251 with
p-value = 0.36369) suggest that one-parameter Rayleigh provides an adequate fit
to this data set. Based on this 12 data points, we find pp = 3.1593. Table 3
presents the values of four estimators with choices of ¢; =0.5,1.0,1.5,2.0 and
co = £1.0, £2.0.

An important issue is to determine whether these Bayes estimators give
better estimates than the MLE. To test this, we have computed Kolmogorov—
Smirnov (KS) distances between the empirical distribution and the fitted dis-
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tribution functions for MLE and other Bayes estimators. In all cases, the KS
distance for Bayes estimators are smaller than the distance using MLE (results
are not reported here).

Table 3: Four different estimators of the parameter o based on wind speed data
with values of ¢; = 0.5,1.0,1.5,2.0 and ¢ = £1, +2.

’ C1 ‘ C2 ‘ g1 g2 g3 g4

-1 3.1946 3.1946 3.1779 3.1779

1 3.1946 3.1946 3.2117 3.2117

0-5 -2 3.1946 3.1946 3.1614 3.1614
2 3.1946 3.1946 3.2290 3.2290

-1 3.1946 3.1779 3.1779 3.1614

1.0 1 3.1946 3.1779 3.2117 3.1946
’ -2 3.1946 3.1779 3.1614 3.1451
2 3.1946 3.1779 3.2290 3.2117

-1 3.1946 3.1614 3.1779 3.1451

15 1 3.1946 3.1614 3.2117 3.1779
’ -2 3.1946 3.1614 3.1614 3.1291
2 3.1946 3.1614 3.2290 3.1946

-1 3.1946 3.1451 3.1779 3.1291

9 1 3.1946 3.1451 3.2117 3.1614
0 -2 3.1946 3.1451 3.1614 3.1133
2 3.1946 3.1451 3.2290 3.1779

Table 4 presents the 95% credible and the HPD intervals for o under ex-
tended Jeffreys prior distribution. For comparison, we have calculated 95% confi-
dence interval using the asymptotic variance of the MLE as (2.2655,4.0531). The
width of the HPD intervals are smaller than the width of the confidence inter-
val, corresponding to all choices of ¢; values, whereas the 95% credible intervals
provide larger width compared to the HPD intervals and the confidence interval.

Table 4: The 95% Credible intervals and HPD intervals for wind speed data.

C1

1.0 \ 1.5 \ 2.0

Intervals
0.5 |

Credible | (3.4887, 6.2155) | (3.4332, 6.0429) | (3.3805, 5.8827) | (3.3304, 5.7336)
HPD (2.4909, 4.2542) | (2.3664, 4.1413) | (2.3134, 4.0362) | (2.2819, 3.9381)
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6. DISCUSSION

From the simulation study, we establish that the estimators are asymp-
totically unbiased and consistent. For moderate or large sample sizes, all the
estimators with Hartigan’s prior along with QLF have minimal biases. We also
notice that, except 61, other estimators underestimate when ¢; = 1.5 and ¢ = —2.
When we take into account Jeffreys prior with QLF, 3 and 64 underestimates,
whereas 61 and 69 overestimates. Finally, when comparing the functioning of
all the estimators, we illustrate that as far as biases are concerned, &9 performs
better than &1 in view of Hartigan’s prior. Using KS distance we find that four
Bayes estimators provide convincingly better estimates of o than 65 based on
wind speed data.
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