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Abstract:

• The Garman–Klass unbiased estimator of the variance per unit time of zero-drift
Brownian Motion, is quadratic in the range-based financial-type data CLOSE−OPEN,
MAX−OPEN , OPEN−MIN reported on regular time windows. Its variance, 7.4
times smaller than that of the common estimator (CLOSE−OPEN )2, is widely be-
lieved to be the minimal possible variance of unbiased estimators. The current report
disproves this belief by exhibiting an unbiased estimator in which 7.4 becomes 7.7322.
The essence of the improvement lies in data compression to a more stringent suf-
ficient statistic. The Maximum Likelihood Estimator, known to be more efficient,
attains asymptotically the Cramér–Rao upper bound 8.471, unattainable by unbiased
estimators because the distribution is not of exponential type.

Beyond Brownian Motion, regression-fitted (mean-1) quadratic functions of the more
stringent statistic increasingly out-perform those of CLOSE−OPEN , MAX−OPEN ,
OPEN−MIN when applied to random walks with heavier-tail distributed increments.

Key-Words:

• Garman–Klass; Brownian Motion; volatility; estimation.

AMS Subject Classification:

• 62F10, 62P05.



200 I. Meilijson



Garman–Klass Revisited 201

1. INTRODUCTION

Consider a mean-zero Brownian Motion with constant unknown unit-time

variance σ2, monitored over disjoint regular intervals of time for each of which the

initial (OPEN ), final (CLOSE ), maximal (MAX ) and minimal (MIN ) values are

reported. The Garman–Klass [5] variance estimator, introduced three decades

ago, achieves the accuracy in estimating σ2 that the classical, natural estimator

average (CLOSE−OPEN )2 does in 7.4 times the observation period. This un-

biased variance estimator is the minimum-variance unbiased quadratic function

of the spreads c = CLOSE−OPEN , h = MAX−OPEN , l = MIN−OPEN (for

close, high, low). As will be shown, range data S1 = (c, h, l) can be compressed

further without loss of sufficiency, yielding an unbiased variance estimator with

efficiency 7.73 with respect to c2. There is not much room for further improve-

ment, as the Cramér–Rao bound makes 8.5 out of reach. Rogers & Satchell [9]

suggested another unbiased estimator of σ2, with efficiency 6 with respect to c2,

that is unbiased even for general unknown drift. We do not attempt here to

compress range data for non-zero drift.

As stressed repeatedly, volatilities change over time and past data should

be given decaying importance, as in GARCH-type estimators. The present paper

deals with constant volatility only, emphasizing efficiency as a means of making

do with short observed histories.

A coarser (but incomplete) sufficient statistic. Consider the triple

S2 = (C, H, L) where C = |c|, (H, L) = (h, l) if c > 0, while (H, L) = −(l, h) if

c < 0. Without loss of relevant information about the variance, the Brownian

Motion trajectory {B(t); t∈ (0, 1)} may be replaced by the flipped path {W (t);

t ∈ (0, 1)}, defined as W (t) = B(0) + [B(t) − B(0)] sign(B(1) − B(0)). That is,

the three interval lengths (−L, C, H−C), in fact the further compression
(

C, min(−L, H−C), max(−L, H−C)
)

, determined by (c, h, l), carry all relevant

information contained in (c, h, l) about σ2, but do not determine (c, h, l). Al-

though intuitively clear after some thought, sufficiency of
(

C,min(−L, H−C),

max(−L, H−C)
)

can be formally inferred from Siegmund’s [11] representation

displayed as (A.1) in the sequel. The Rao–Blackwell theorem [3, 8] claims that un-

der these conditions, for every S1-based unbiased estimator of some arbitrary pa-

rameter there is an S2-based unbiased estimator with smaller variance — strictly

smaller unless the two coincide. As will be seen, the Garman–Klass estimator is

a function of S2, so the Rao–Blackwell improvement leaves it invariant. However,

the Garman–Klass estimator, best among the quadratic function of S1, is not best

possible as a function of S2. Had S2 been a complete minimal sufficient statistic,

Garman–Klass and the proposed estimator would have equally been the UMVUE

(uniformly minimum variance unbiased estimator) of the parameter. However,

C2 and 2 [(H − C)2 + L2] are different unbiased estimators of σ2. Hence, S2
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(whether minimal sufficient or not) is not complete. Loose some, win some:

we will only conjecture rather than claim optimality of the proposed S2-based

quadratic unbiased estimator of σ2; on the other hand, the exchangeability prop-

erty under which (−L, C, H−C) and (H−C, C,−L) are identically distributed,

justifies searching for the best quadratic function of (−L, C, H−C) among those

that are linear combinations of four rather than six quadratic terms.

Four basic quadratic unbiased variance estimators. Consider

(1.1)
σ̂2

1 = 2
[

(H−C)2 +L2
]

, σ̂2
2 = C2 ,

σ̂2
3 = 2(H−C−L)C , σ̂2

4 = −
(H−C)L

2 log(2)− 5
4

.

The rationale for the somewhat bizarre coefficients is that each of these four terms

is an unbiased estimator of σ2, with respective variances

(1.2)
Var(σ̂2

1) = 0.797943 σ4 , Var(σ̂2
2) = 2σ4 ,

Var(σ̂2
3) = 0.504753 σ4 , Var(σ̂2

4) = 1.004876 σ4 .

The proposed variance estimator vis à vis Garman–Klass. The

proposed estimator σ̂2 =
∑4

1 αi σ̂
2
i assigns to these four terms respective weights

(1.3) α1 = 0.273520 , α2 = 0.160358 , α3 = 0.365212 , α4 = 0.200910 ,

and achieves variance Var(σ̂2) = 0.258658 σ4. The Garman–Klass estimator

(1.4) σ̂2
GK = 0.511(h − l)2 − 0.019

(

c(h + l) − 2 h l
)

− 0.383 c2

happens to pool these four basic estimators too, so the Rao–Blackwell theorem

does not rule out the possibility that it coincides with σ̂2. However, as argued

earlier, the two do not agree, and σ̂2
GK =

∑4
1 βi σ̂

2
i pays a price for being quadratic

in (c, h, l). Its coefficients are given by

β1 =
0.511

2
= 0.2555 ,

β2 = 0.511 − 0.383 − 0.019 = 0.1090 ,

β3 = 0.511 −
0.019

2
= 0.5015 ,

β4 = 2
(

0.511 − 0.019
)

(

2 log(2) −
5

4

)

= 0.1340 ,

(1.5)

that achieve Var(σ̂2
GK) = 0.27 σ4.

Maximum Likelihood variance estimators and Fisher information.

In principle, giving up on the requirement of unbiasedness, the computer-intensive

maximum likelihood estimator (MLE) of σ2 by Magdon-Ismail & Atiya [7] could

have been a competitor, since MLE’s are functions of any sufficient statistic.
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However, this estimator is based on (h, l) rather than on (c, h, l). Magdon-Ismail

& Atiya report that their estimator has variance slightly higher than Garman–

Klass’. Variance estimators other than Garman–Klass and Rogers–Satchell have

been suggested in the literature, some for unknown drift, range-based (based

on MAX and MIN but not on OPEN and CLOSE , e.g., Alizadeh, Brandt &

Diebold [1], Christensen, Podolskij & Vetter [4]) or otherwise (e.g., noisy or lattice

measurements), but not unbiased — the subject matter of this paper. There is

no theoretical limit as to how accurately can σ2 be estimated, as its value is

a.s. deterministically imprinted into the trajectory of B on any time interval of

positive length.

The joint generating function of (c, h, l) is presented by Garman & Klass

as an infinite series, from which these authors derived all pertinent second and

fourth degree moments.

Ball & Torous [2] developed an infinite-series formula for the joint density

of (c, h, l) and used it to construct numerically the MLE of σ2. They report esti-

mated efficiency of the MLE for a selection of sample sizes, basing each value on a

simulation sample size of 1000 runs, a great achievement in 1984, but insufficient

for delicate comparisons. The Fisher information was numerically re-evaluated

via the formula by Siegmund quoted earlier, exhibited as (A.1) in the sequel. The

inverse of the Fisher information is the Cramér–Rao lower bound for the variance

per time-window of any unbiased estimator of σ2, for any sample size. It is also

the asymptotic variance of the (not necessarily unbiased) MLE of σ2. Its value

turns out to be 0.2361. This is the benchmark with which C2’s 2, Garman–Klass’

0.27 and the proposed estimate’s 0.258658 variances should be compared.

For our problem, the Cramér–Rao bound 0.2361 is not attained by

unbiased variance estimators: disproving exponentiality of a family of

distributions. Under proper regularity assumptions (see Joshi [6]), the Cramér–

Rao bound is attained if and only if there is a linear relationship between the

estimator and the score function (derivative with respect to the parameter of the

logarithm of the density). However, for this to happen, there must exist a linear

relationship between the score functions evaluated at different values of the pa-

rameter. It was ascertained numerically that this is not the case. In other words,

the model is not of exponential type. We don’t know whether the sufficient statis-

tic S2, shown above not to be complete, is minimal sufficient. As a result of all

of these considerations, the proposed estimator may not be of minimal variance.

Since both the proposed and Garman–Klass’ estimators are averages over

time-windows, their variances per time-window are independent of sample size.

It is conceivable, and Ball & Torous have provided evidence in this direction,

that the MLE has variance per time-window that decreases as the sample size

increases, so for small sample sizes the proposed estimator has in practice no

competitor.
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Moreover, since the BM model doesn’t really hold in practice, a broader

contribution of this paper is the introduction of more efficient quadratic statistics

on which to base practical estimators. Simulation results for random walks with

t-distributed increments are reported in Section 3.

2. DERIVATION

Following the steps of Garman & Klass, all second and fourth order mo-

ments of (C, L, H) will be identified. Some of these will be quoted from Garman

& Klass, some will be derived once the joint densities of (C, H) and (C, L) are

explicitly presented, and some will require some additional argument. Although

it would perhaps be more natural to work only with the exchangeable variables

∆ = H−C and δ = −L, work will be performed on the variables H and L as

well, in order to link more easily with Garman & Klass’ triple (c, h, l).

2.1. The joint densities of C and each of H and L: four unbiased

estimators

Assume throughout the computations that the drift is 0 and the variance

per unit time is 1. Thus, E[C2] = E[c2] = 1.

By a common reflection argument, BM reaching at least as high as x > 0

and ending up at y = x−(x−y) ∈ (0, x) is tantamount to ending up at x+(x−y).

Or, P
(

H > x, C ∈ [y, y +dy]
)

= P
(

C ∈ [2x−y, 2x−y +dy]
)

= 2φ (2x−y) dy,

where φ(·) = 1√
2π

exp
{

−1
2(·)2

}

is the standard normal density function (see Sieg-

mund or expression (A.1) in the Appendix for a generalization to (C, H, L)).

Similarly, P
(

L < z, C ∈ [y, y + dy]
)

= P
(

C ∈ [2z − y, 2z − y + dy]
)

=

2φ(2z − y) dy. Hence, the joint density of H and C is

(2.1) fH,C(x, y) = 4(2x − y)φ(2x − y) , 0 < y < x ,

and that of L and C is

(2.2) fL,C(z, y) = 4(y − 2z)φ(y − 2z) , z < 0 < y .

These joint densities, essentially re-phrasings of a well known formula for

the joint density of (h, h− c) (see Yor [12]), lead to the first four of the following

five second moments. The fifth is taken from Garman & Klass. Details are

omitted. E[C2] =1 by assumption.

(2.3)

E[H2] =
7

4
, E[L2] =

1

4
, E[CH] =

5

4
, E[CL] = −

1

4
, E[HL] = 1 − 2 log(2) .
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As a corollary,

Lemma 2.1. The variance estimators σ̂i, i = 1, 2, 3, 4 (see (1.1)) are un-

biased.

Seshadri’s [10] theorem that 2h(h − c) is exponentially distributed with

mean 1, and is independent of c, implies that 2H (H − C) is exponentially dis-

tributed with mean 1, and is independent of C. This is so, simply because the

conditional distribution of (h, c) given that c > 0 is the (unconditional) distribu-

tion of (H, C).

Of course, the same applies to 2 l(l−c) and 2L(L−C). However, 2H(H−C)

and 2L(L−C) are dependent (identities (2.5) yield correlation 1 + 7
2 ζ(3) −

8 log(2) = −0.3380 between the two), and dependent given C.

Otherwise, it would have been very easy to sample (C, H, L) triples. As

things stand, it is easy to sample pairs (c, h) (and (c, l)) or (C, H) (and (C, L)),

by independently sampling c and h(h − c). A practical approximate method to

sample (C, H, L) triples is to sample (C ′, H ′) correctly, then make the wrong

choice L′ = C ′−H ′, not on [0, 1] but on each of the N sub-intervals [ i−1
N

, i
N

].

The construction is correct except if H and L are attained in the same sub-

interval, the probability of which decreases fast as N increases. Instead of letting

L′ = C ′−H ′, other copulas may be used, to better approximate features of the

joint distribution of (C ′, H ′, L′).

2.2. The MLE’s of σ2 based on (C, H) and on (C, L) are unbiased

It may be of interest to notice that (2.1) (resp. (2.2)), reinterpreted as

fH,C(x, y; σ) = 4 2x−y
σ3 φ

(2x−y
σ

)

, identifies the MLE of σ2 based on (C, H) (resp.

(C, L)) as the average over the sample of 1
3 (2H−C)2 = 1

3 C2 + 1
3 [4(H−C)2] +

1
3 [4C (H −C)] and 1

3(2L−C)2 = 1
3 C2 + 1

3 [4L2] + 1
3 [−4CL]. The average of the

two, the simple average of the first three unbiased estimators in (1.1), achieves

variance 0.3694, above Garman–Klass’.

2.3. The fourth moments of (C, H, L)

The following fourth moments are derived from the joint densities of (H, C)

and (L, C). E[C4] = 3 is Gaussian kurtosis.

(2.4)

E[H4] =
93

16
, E[L4] =

3

16
, E[CH3] =

147

32
, E[CL3] = −

3

32
,

E[C3H] =
27

8
, E[C3L] = −

3

8
, E[C2H2] =

31

8
, E[C2L2] =

1

8
.
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The following fourth moment information is taken from Garman & Klass.

ζ is Riemann’s zeta function, with ζ(3) =
∑∞

k=1
1
k3 ≈ 1.2020569.

E[H2L2] = E[h2l2] = 3 − 4 log(2) ,

E[C2HL] = E[c2h l] = 2 − 2 log(2) −
7

8
ζ(3) ,

E[H3L] + E[HL3] = E
[

h l(h2 + l2)
]

= 6 − 6 log(2) −
9

4
ζ(3) ,

E[CH2L] + E[CHL2] = E
[

c h l (h + l)
]

=
9

2
− 4 log(2) −

7

4
ζ(3) .

(2.5)

There is one more (C, H, L)-based fourth moment needed, whose value does

not follow from Garman & Klass’.

Lemma 2.2. E[CHL2] = ζ(3)/16 − 2 log(2) + 47
32 ≈ 0.1575842.

A proof of Lemma 2.2 can be found in the Appendix. Large sample em-

pirical estimation of E[CHL2] gave 0.15762, yielding Var(σ̂2
4) very close to 1.

Had E[CHL2] been equal to log(2)(3 − 4 log(2)) ≈ 0.15763 (initial conjecture),

Var(σ̂2
4) would have been exactly 1.

From all the fourth moments above,

E[C4] = 3 ,

E[δ4] = E[L4] =
3

16
,

E[Cδ3] = −E[CL3] =
3

32
,

E[C2δ2] = E[C2L2] =
1

8
,

E[C3δ] = −E[C3L] =
3

8
,

E[C2∆δ] = E[C3L] − E[C2HL] = 2 log(2) +
7

8
ζ(3) −

19

8
,

E[C∆δ2] = E[CHL2] − E[C2L2](2.6)

= E[CHL2] −
1

8
=

ζ(3)

16
− 2 log(2) +

43

32
,

E[∆2δ2] = E[H2L2] + E[C2L2] − 2E[CHL2] =
3

16
−

ζ(3)

8
,

2 E[∆3δ] = E[∆3δ] + E[∆δ3]

= −
(

E[H3L] + E[HL3]
)

+ E[C3L] + E[CL3] − 3E[C2HL] + 3E[CH2L] ,

= 6 log(2) −
9

16
ζ(3) −

27

8
.
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2.4. The covariance matrix of the four basic estimators

Let Σ stand for the covariance matrix of the four basic estimators. Their

variances are on the diagonal, their covariances off the diagonal.

Applying the formulas of the previous sub-section, the variances of the basic

estimators σ̂2
i (see (1.1)) are

Σ(1, 1) = Var(σ̂2
1) = 8

(

E[δ4] + E[∆2δ2]
)

− 1 = 2 − ζ(3) = 0.797943 ,

Σ(2, 2) = Var(σ̂2
2) = 3 − 1 = 2 ,

Σ(3, 3) = Var(σ̂2
3) = 8

(

E[C2δ2] + E[C2∆δ]
)

− 1(2.7)

= 8

[

log(4) +
7

8
ζ(3) −

9

4

]

− 1 = 0.504753 ,

Σ(4, 4) = Var(σ̂2
4) =

E[∆2δ2]
(

log(4)− 5
4

)2 − 1 =
3
16 − ζ(3)

8
(

log(4)− 5
4

)2 − 1 = 1.004876 .

The covariances of the basic estimators are

Σ(1, 2) = Cov(σ̂2
1, σ̂

2
2) = 4E[C2δ2] − 1 = −

1

2
,

Σ(1, 3) = Cov(σ̂2
1, σ̂

2
3) = 8E[Cδ3] + 8E[C∆δ2] − 1

=
21 + ζ(3)

2
− 16 log(2) = 0.010674 ,

Σ(1, 4) = Cov(σ̂2
1, σ̂

2
4) =

4E[∆δ3]

log(4) − 5
4

− 1

=
12 log(2) − 27

4 − 9
8 ζ(3)

log(4) − 5
4

− 1 = 0.580786 ,(2.8)

Σ(2, 3) = Cov(σ̂2
2, σ̂

2
3) = 4E[C3δ] − 1 =

1

2
,

Σ(2, 4) = Cov(σ̂2
2, σ̂

2
4) =

E[C2∆δ]

log(4) − 5
4

− 1 =
7
8 ζ − 9

8

log(4) − 5
4

= −0.537074 ,

Σ(3, 4) = Cov(σ̂2
3, σ̂

2
4) =

4E[C∆2δ]

log(4) − 5
4

− 1

=
ζ(3)
4 + 43

8 − 8 log(2)

log(4) − 5
4

− 1 = −0.043711 .
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2.5. Derivation of the proposed estimator

Letting α (see (1.3)) stand for the weights assigned to the basic estimators,

the weighted sum has variance αTΣα and mean αT1. Using a Lagrange multiplier

to constrain the mean to be 1, minimal variance is achieved at α = Σ−1
1

1T Σ−11
,

yielding the weights displayed in (1.3). The variance of the proposed estimator

is 1
1T Σ−11

= 0.258658, with corresponding efficiency 21TΣ−11 = 7.73221.

3. HEAVY TAILED RANDOM WALKS — SIMULATION RESULTS

If the logarithmic return process is not distributed as a mean-zero Brownian

Motion, variance estimators that are quadratic in S1 or S2 can only be compared

empirically, aided by simulation. Even the simplest non-Gaussian Lévy pro-

cess, Poisson process with drift, seems to defy analysis. This section illustrates

the empirical construction of quadratic estimators via Regression. We generate

power-law-tailed random walk data by assigning quite arbitrarily a t-distribution

to its increments. This will permit to monitor comparative performance of the

S1 and S2 statistics in term of tail thickness.

As is commonly observed in financial data, the logarithmic increments of

returns have power-law tails, at least in the visible range, with tail parameter

around 3. This means finite variance but infinite variance of the usual empirical

variance estimators. Suppose that the basic process on which (Open, Close, Min,

Max) data is reported per time window is a random walk with t-distributed

increments. A simulation analysis will now be reported, in which the number

of increments of the random walk per time window is 10, 30 and 50, and the

degrees of freedom (df) range from 1.5 to 5 with step size 0.5. Minimum sum-of-

squares quadratic functions with mean 1 of the S1 and S2 statistics were fitted

by Regression, with sample size 105: the regression coefficients were identically

calibrated so that the predictor of unity has mean 1 in each such sample. Each

such Regression was repeated 100 times, and the averages of the corresponding

regression coefficients and overall “variances” were recorded. Of course, second

moments are finite only for df > 2 and fourth moments are finite only for df > 4,

but the empirical study seems instructive. A sample of size 105 from the sum of

N = 50 t{df=3}-distributed random variables typically displays lighter tails than

df = 3 would entail. Table 1 reports the empirical minimum variance of the

quadratic functions, and Table 2 reports the coefficients of the building blocks

of expression (1.1) that yield the minimum-variance quadratic function for each

case. These building blocks have expectation 1 for Brownian Motion but not for

random walk, so their coefficients need not add up to unity. Table 1 displays

performances similar to those derived for Brownian Motion for moderate df , fast
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deteriorating when df decreases, in which case S2 data progressively outperforms

S1 data. S2 data yields lower variances than S1 data throughout the range, as

well as for uniform and double exponentially distributed increments, although

the difference in variance in these light-tail cases is as small as for BM .

Table 1: Minimum variance of mean-1 quadratic functions of S1 and S2 data.

N = 10 N = 30 N = 50
df

S2 S1 S2 S1 S2 S1

1.5 16.2403 51.0366 8.3438 32.4697 6.5322 28.3950
2.0 4.8444 6.6039 2.6532 3.8327 2.1972 3.2252
2.5 2.5864 2.8365 1.4297 1.5529 1.1718 1.2627
3.0 1.7359 1.8038 0.9527 0.9782 0.7630 0.7788
3.5 1.2334 1.2746 0.6809 0.6991 0.5467 0.5624
4.0 0.9469 0.9776 0.5409 0.5585 0.4532 0.4686
4.5 0.7864 0.8124 0.4792 0.4957 0.4094 0.4239
5.0 0.7071 0.7296 0.4473 0.4629 0.3896 0.4037
∞ 0.4679 0.4826 0.3630 0.3765 0.3369 0.3496

∞, N=∞ 0.2587 0.27

It is of interest to observe how does S2 outperform S1 data for low df .

Table 2 shows that the role of C is downplayed or even dampened in favor of

those of H−C and −L, gradually incorporating C into the Regression as df

increases. The rationale for this is that the tail parameter of sums of i.i.d. data

is the same as that of the summands, whereas the tail parameter of extrema is

the sum of those of the summands.

Table 2: Coefficients of the minimum variance mean-1 quadratic function
of S2 data for N = 50 increments per time window.

N= 50

df
2
�
(H−C)2 +L2

�
C2 2(H−C−L)C

−(H−C)L

2 log(2)− 5/4

1.5 0.0209 −0.0000 0.0010 0.1724
2.0 0.1358 −0.0004 0.0352 0.1561
2.5 0.1745 −0.0034 0.1573 0.1215
3.0 0.1827 0.0140 0.2461 0.1149
3.5 0.2006 0.0666 0.2460 0.1228
4.0 0.2185 0.1081 0.2442 0.1317
4.5 0.2335 0.1271 0.2620 0.1399
5.0 0.2480 0.1395 0.2781 0.1473
∞ 0.3974 0.2321 0.4390 0.2245

∞, N=∞ 0.2736 0.1604 0.3652 0.2009
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This makes C theoretically as heavy tailed as each increment, but makes

H−C and −L have lighter tails than the increments. In contrast, the [h, c, l]

data of statistic S1 is less able to split variables into light tail and heavy tail

components. Although h − |c| − l = H−C−L, the insistence on resorting to

quadratic functions leaves it out of the S1 game. Still, both statistics seem to

work fairly well even under low df . In contrast to the variances 2.1972 or 3.2252

for df = 2, 0.7630 or 0.7788 for df = 3 and 0.4532 or 0.4686 for df = 4 (see N = 50

in Table 1), the calibrated C2 has respective empirical variance above 5000, 16

and 2.5, converging reasonably fast
(

2 + 6
(df−4)N

)

to 2 thereafter.

APPENDIX — PROOF OF LEMMA 2.2

For the sake of conciseness, the tedious integration to be presented will be

restricted to the identification of E[CHL2], although, in principle, more general

joint moments and moment generating function of (C, H, L) could have been

identified.

Consider the infinitesimal event
{

BM (1) ∈ (ξ, ξ+dξ), BM (s) ∈ (a, b), ∀s ∈

[0, 1]
}

, where a < min(ξ, 0) ≤ 0 ≤ max(ξ, 0) < b. By Siegmund’s Corollary 3.43,

its probability Q(ξ, a, b) dξ is as follows

(A.1) Q(ξ, a, b) =
∞

∑

j=−∞

{

φ
(

ξ − 2j (b − a)
)

− φ
(

ξ − 2a − 2j (b − a)
)

}

.

The joint density fc,h,l(ξ, a, b) is (minus) the mixed second derivative of Q

with respect to a and b, on
{

ξ ∈ (a, b), a < 0, b > 0
}

. The joint density fC,H,L is

simply 2fc,h,l, restricted to
{

ξ ∈ (0, b), a < 0, b > 0
}

. The two terms in the j = 0

and second term in the j =1 summands vanish because they are independent of

at least one of a and b.

To calculate E[CHL2], the contribution of each summand in (A.1) will be

integrated in three univariate steps. The first step will integrate over a ∈ (−∞, 0)

the product of a2 and the pertinent mixed second derivative. ∂
∂a

φ(ξ+Ka+Mb) da

is to be interpreted as the integration-by-parts element dφ(ξ +Ka+Mb), viewed

as a function of a.
∫ 0

−∞

∂

∂b
a2 ∂

∂a
φ (ξ + Ka + Mb) da =

=
2

K2

∂

∂b

[

φ(ξ + Mb) + (ξ + Mb)Φ(ξ + Mb)
]

(for K > 0)

=
2M

K2
Φ(ξ + Mb) (for K > 0)

=
2M

K2
Φ(ξ + Mb) −

2M

K2
(for K < 0) .(A.2)
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Now expression (A.2) will be multiplied by ξ and integrated over ξ ∈ (0, b).

For K > 0 (K < 0) it is convenient to integrate Φ∗ (Φ). These terms appear in

(A.3) and (A.4). The free term in (A.2) contributes 2M
K2

b2

2 and cancels with the

corresponding b2 term in (A.4).

∫ b

0
ξ

∂

∂b

∫ 0

−∞
a2φ(ξ + Kda + Mb) dξ =

=
2M

K2

∫ (M+1)b

Mb

y Φ(y) dy −
2M2 b

K2

∫ (M+1)b

Mb

Φ(y) dy

=
M

K2

[

(M2b2 +1)Φ(Mb) −
(

(M2−1)b2 + 1
)

Φ
(

(M +1)b
)

+ Mb φ(Mb) − (M −1)b φ
(

(M +1)b
)

]

= −
M

K2

[

(M2b2 +1)Φ∗(Mb) −
(

(M2−1)b2 + 1
)

Φ∗((M +1)b
)

(A.3)

+ Mb φ(Mb) − (M −1)b φ
(

(M +1)b
)

]

+
M

K2
b2 .(A.4)

Finally, expressions (A.3) and (A.4), multiplied by b and integrated over

b ∈ (0,∞), via

(A.5)

∫ ∞

0
b3 Φ∗(Ab) db =

3

8A4
,

∫ ∞

0
b Φ∗(Ab) db =

1

4A2
,

∫ ∞

0
b2 φ(Ab) db =

1

2A3
,

yield a rational function of j (with M = 2j and K =−2j or K =−2(j−1)) whose

sum contains only terms of the form −
∑∞

1 (−1)j 1
j

= log(2) and
∑∞

1
1
j3 = ζ(3),

as in the statement of Lemma 2.2. Further details are omitted.
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